An introduction to Regge Field Theory

Martin Poghosyan
(CERN)

Wilhelm und Else Heraeus Physics Summer School
“Diffractive and electromagnetic processes at high energies”
Heidelberg, Germany, September 2-6, 2013
Map of High Energy Physics

\[
\ln \frac{1}{x} \quad \ln Q^2
\]
The *Scattering Matrix*

The transition of a closed system of particles from an initial state $|k\rangle$ to a final state $|f\rangle$ is described in quantum theory by the S matrix:

$$|f\rangle = S |k\rangle$$

The matrix elements of the S matrix:

$$S_{fk} = \langle f | S | k \rangle$$

Can be represented in the form

$$S_{fk} = \delta_{fk} + i (2\pi)^4 \delta^{(4)}(P_i - P_k) T_{fk}$$

$\delta_{fk} = 1$ if the state does not change ($|f\rangle = |k\rangle$). No interaction.

T_{fk} is called the transition (scattering) amplitude from the state $|k\rangle$ to the state $|f\rangle$.

T_{fk} is a function of 4-momentum and polarization of particles (and contains γ-matrixes in case of fermions).
The Scattering Amplitude

For spinless particles, T_{fk} is a function of the relativistically invariant variables formed from the 4-momentum of the particles.

$T_{fk}(P_1, P_2, P_3, P_4)$

$P_i = \{E_i, \mathbf{p}_i\}$

$4 \times 4 = 16$ variables

Not all 16 variables are independent

Energy-momentum conservation: $P_4 = P_1 + P_2 - P_3$

6 invariants can be formed with P_1, P_2 and P_3: $P_1^2, P_2^2, P_3^2, (P_1P_2), (P_1P_3), (P_2P_3)$

$P_i^2 = m_i^2$ ($i = 1, 2, 3, 4$)

$P_4^2 = (P_1 + P_2 - P_3)^2 = P_1^2 + P_2^2 + P_3^2 + 2(P_1P_2) - 2(P_1P_3) - 2(P_2P_3) = m_4^2$

T_{fk} is a function of 2 variables for binary reactions with spinless particles

Mandelstam variables

$s = (P_1 + P_2)^2 = (P_3 + P_4)^2$

t $= (P_1 - P_3)^2 = (P_2 - P_4)^2$ [1+3 \rightarrow 2+4]

$u = (P_1 - P_4)^2 = (P_2 - P_3)^2$ [1+4 \rightarrow 2+3]

$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$

$T_{fk} = T_{fk}(s, t)$
Crossing symmetry

In quantum field theory, absorption of a particle with 4-momentum $-p$ and energy $E < -m$ corresponds to emission of an antiparticle with 4-momentum p and positive energy $E > m$.

Since $T_{ik}(s, t)$ is a function of kinematical invariants (not on the sign of P_i), the same function describes the following reactions:

1. $1+2 \rightarrow 3+4$ for $P_1, P_2, P_3, P_4 > 0$ $\quad s$ – channel ($s > 4m^2$, $t, u < 0$)
2. $1+3 \rightarrow 2+4$ for $P_1, P_4 > 0$ and $P_2, P_3 < 0$ $\quad t$ – channel ($t > 4m^2$, $s, u < 0$)
3. $1+4 \rightarrow 2+3$ for $P_1, P_3 > 0$ and $P_2, P_4 < 0$ $\quad u$ – channel ($u > 4m^2$, $s, t < 0$)
4. $1 \rightarrow 2+3+4$ for unstable particle ($P_1, P_3, P_4 > 0$ and $P_2 < 0$)
Unitarity

From the conservation of the probability norm in interaction processes:

\[S^+ S = 1 \]

The sum of probabilities of all processes which are possible at a given energy is equal to unity

\[
i \left[T_{fk}^* - T_{fk} \right] = \sum_n \int \prod_{l=1}^{n} \frac{d^3 p_l}{2E_l(2\pi)^3} T_{nk} T_{fn}^* \left(\frac{2\pi}{\hbar} \right)^4 \delta^{(4)}(P_k - \sum_{q=1}^{n} P_q)
\]

\(T_{nk} \) – the amplitude for a transition from the state \(| k \rangle\) to the state \(| n \rangle\) with \(n \) particles

\[
\sum_n \int \quad \text{means integration over phase-space for each particle in the channel with} \ n \ \text{particles sum over all channels.}
\]

Optical theorem

If \(| f \rangle = | k \rangle\):

\[
2 \text{Im} T(s, 0) = \sum_n \int \prod_{l=1}^{n} \frac{d^3 p_l}{2E_l(2\pi)^3} |T_{nk}|^2 \left(\frac{2\pi}{\hbar} \right)^4 \delta^{(4)}(P_k - \sum_{q=1}^{n} P_q) = 4j\sigma_{tot}(s)
\]

\[
\frac{d\sigma_{el}}{dt} = \frac{|T(s,t)|^2}{64\pi p_a^2 s} \quad \sigma_{tot}(s) = \frac{\text{Im} T(s,0)}{2p_a \sqrt{s}}
\]

\[
j = \sqrt{(p_a p_b)^2 - m_a m_b^2}
\]
Kinematics of binary reactions

Let's assume $m_1 = m_2 = m_3 = m_4 = m$

In CM system: $p_1 + p_2 = p_3 + p_4 = 0$

$$E_i = \frac{1}{2} \sqrt{s} \quad p_i^2 = \frac{s}{4} - m^2 \quad i = 1, 2, 3, 4$$

$$t = -(p_1 - p_3)^2 = -2p_1^2(1 - \cos\theta_s)$$

$$-4p_1^2 \leq t \leq 0$$

$$\cos\theta_s = 1 + \frac{2t}{s - 4m^2} = -\left(1 + \frac{u}{s - 4m^2}\right)$$

$$T(s,t) = T(s, \cos\theta_s)$$

$$\frac{d\sigma_{el}}{d\Omega} = \left|\frac{T(s,t)}{8\pi\sqrt{s}}\right|^2$$
Partial wave expansion

\[
f(s, \cos \theta) = \frac{1}{8\pi \sqrt{s}} T(s, t) = \frac{1}{P} \sum_{l=0}^{\infty} (2l+1) f_l(s) P_l(\cos \theta)
\]

Represented in the form of a series in the partial-wave amplitudes \(f_l(t)\), which characterize scattering in the state with relative orbital angular momentum \(l\).

\[
\int_{-1}^{1} dz P_l(z) P_{l'}(z) = \frac{2 \delta_{ll'}}{2l+1} + \text{unitarity}
\]

\[
P_l(z) = \frac{1}{2^l l!} \left(\frac{dz}{dz} \right)^l (z^2 - 1)^l - \text{Legendre polynomial}
\]

\[
\text{Im } f_l(s) = \left| f_l(s) \right|^2 + \sum_n \int \left| f_N^N(s, \tau_N) \right|^2 d\tau_N \quad \Rightarrow \quad \text{Im } f_l(s) \geq \left| f_l(s) \right|^2 \quad \Rightarrow \quad \text{Im } f_l(s) \leq 1
\]

Froissart bound

For \(s \to \infty\) the contribution comes from terms with \(l_{\text{eff}} \leq C \sqrt{s} \ln s\)

\[
\sigma_{\text{tot}}(s) = \frac{\text{Im } T(s, 0)}{2p_*^\sqrt{s}} = \frac{4\pi}{P_a^2} \sum_{l=0}^{l_{\text{eff}}} (2l+1) f_l(s) \leq \frac{4\pi}{P_a^2} l_{\text{eff}}^2 \approx C' \ln^2 s
\]

\[
\sigma_{\text{tot}}(s) \leq C' \ln^2 s
\]

(assumes unitarity, analyticity, short-range character of strong interactions)
Pomeranchuk theorem

\[\text{Im} T_{ab}(s, t = 0) = s \sigma_{tot}(ab) \]
\[\text{Im} T_{ab}(u, t = 0) = u \sigma_{tot}(\bar{a}b) \]

If \(T \) is not an oscillating function and \(\frac{1}{\ln s} \frac{\text{Re} T(s, 0)}{\text{Im} T(s, 0)} \to 0 \) at \(s \to \infty \)

\[\sigma_{tot}(ab) = \sigma_{tot}(\bar{a}b) \text{ at } s \to \infty \]

Pomeranchuk theorem may be violated. See O. Nachtmann’s talk.
Suppose the $f_i(t)$ has a singularity of form

$$f_i(t) = \frac{r(t)}{l - \alpha(t)}$$

$$\frac{1}{2i}
\left[f_i(t) - f_i^*(t) \right] \sim f_i(t)f_i^*(t)$$

$$f_i(t) - f_i^*(t) = \frac{r}{l - \alpha(t)} - \frac{r^*}{l - \alpha^*(t)} = \frac{r\left(l - \alpha^*(t)\right) - r^*\left(l - \alpha(t)\right)}{(l - \alpha(t))(l - \alpha^*(t))} \sim 2i \frac{rr^*}{(l - \alpha(t))(l - \alpha^*(t))}$$

$$r = r^*$$

No poles in the real axis in the l plane for $t > 4m^2$
Resonances

Assume for some \(t = t_R \equiv M_R^2 > 4m^2 \), \(\text{Re} \alpha(t_R) = l_R \) → \(\alpha(t) \approx l_R + i \text{Im} \alpha(t_R) + \alpha'(t_R)(t - t_R) \)

Taylor expansion

\[
f_{l_R}(t) \approx \frac{r(t_1)}{l_R - [l_R + i \text{Im} \alpha(t_R) + \alpha'(t_R)(t - t_R)]} = - \frac{\text{Im} \alpha(t_1)}{\alpha'(t_R)(t - t_R) + i \text{Im} \alpha(t_R)} = \frac{\text{Im} \alpha(t_R) / \alpha'(t_R)}{t_R - t - i \text{Im} \alpha(t_R) / \alpha'(t_R)}
\]

\(\text{Im} \alpha(t_R) / \alpha'(t_R) \equiv M_R \Gamma \)

Breit-Wigner

\[
f_{l_R}(t) \sim \frac{1}{M_R^2 + t - iM_R \Gamma}
\]

Regge pole in the physical region of the \(t \)-channel \((t > 4m^2) \) corresponds to a Breit-Wigner resonance with \(\text{Re} \alpha(t_1) = l_R \) (=spin of \(R \))
Reggeon trajectory

Regge trajectories are almost straight lines and in standard Regge theory they are parameterized by $\alpha(t) = \alpha_0 + \alpha' \cdot t$

Regge pole gives a generalization of a particle exchange in the t-channel. It corresponds to an exchange in the t-channel by a state of noninteger spin $\alpha(t)$ (reggeon trajectory), which coincides with particles of spin J for $t = M_J^2$
Partial wave expansion in t-channel and Sommerfeld-Watson transformation

\[T(t,s) = T(t,\cos\theta_t) = \sum_{l=0}^{\infty} (2l + 1) f_l(t) P_l(\cos\theta_t) \]

\[\cos\theta_t = 1 + \frac{2s}{t - 4m^2} \]

\[\sin(\pi\alpha) \approx \sin(\pi l) + \pi(\alpha - l)\cos(\pi l) = \pi(-1)^l(\alpha - l) \]

\[(2l + 1)f_l(t)P_l(\cos\theta_t) = \frac{1}{2i} \int_{C_i} \frac{(-1)^\alpha(2\alpha + 1)f(\alpha, t)P_\alpha(\cos\theta_t)}{\sin(\pi\alpha)} d\alpha \]

\[T(t,s) = \frac{1}{2i} \int_{C} e^{-i\pi\alpha}(2\alpha + 1)f(\alpha, t)P_\alpha(\cos\theta_t) \frac{d\alpha}{\sin(\pi\alpha)} \]

\[T(t,s) = \frac{1}{2i} \int_{C} \sum_{\sigma = \pm 1} \left(1 + \sigma e^{-i\pi\alpha} \right)(2\alpha + 1)f^{\sigma}(\alpha, t)P_\alpha(\cos\theta_t) \frac{d\alpha}{2\sin(\pi\alpha)} \]

\[T(t,s) = \sum_{\sigma = \pm 1 \text{ poles}} \sum_{\sigma} \eta_\sigma(\alpha) \left(\alpha_i^{\sigma}(t) \right) r_i^{\sigma}(t) P_{\alpha_i^{\sigma}(t)}(\cos\theta_t) \]

\[\eta_\sigma(\alpha) = -\frac{\sigma + e^{-i\pi\alpha}}{\sin(\pi\alpha)} \quad \text{signature factor} \]

Cauchy’s integral theorem

\[F(a) = \frac{1}{2\pi i} \int_{C} \frac{F(z)}{z - a} dz \]
Regge pole exchange amplitude

“Physical” region in the t–channel corresponds to $t > 4m^2$, $s < 0$. Analytically continue the amplitude to $s > 4m^2$, $t < 0$ (s–channel).

For $s >> 4m^2 > |t|$, $\cos \theta_t \sim \frac{s}{4m^2} >> 1$

$$P_i(z) \sim z^l \quad \text{for } z >> 1$$

$$T(t,s) = \sum_{\sigma = \pm 1} \sum_{\text{poles}} \eta_{\sigma} \left(\alpha_i^\sigma(t) \right) \gamma_i^\sigma(t) \left(\frac{s}{s_0} \right)^{\alpha_i^\sigma(t)}$$

$$\sigma_{tot}(s) = \frac{1}{s} \text{Im}T(s,0) \sim s^{\alpha_0-1}$$

s_0 is a constant scale factor, usually chosen to be $s_0 = 1 \text{ GeV}^2$.
Duality

\[\text{res.} = \sum \text{resonances} \]

\[= \sum \text{reggeons} \]
Factorization

What is the meaning of $\gamma(t)$?

In fact, all information about incoming and outgoing particles (baryon number, strangeness, etc.) are absorbed in $\gamma(t)$ and it does not depend on s.

$\gamma(t)$ should be related to Reggeon-hadron interaction vertex!

One can assume the initial state does not know anything about the final state: in the cross-channel the initial particles first transform into an intermediate state, which then gets converted into the final particles, with the amplitude independent of the properties of the initial state.

$$\gamma(t) = g_{aa}(t)g_{bb}(t)$$

It is not possible to predict the explicit form of $g_{aa}(t)$ from the analytical properties of the matrix element (model dependent).
Regge pole approximation

At fixed t, with $s >> t$

- Amplitude for a process governed by the exchange of a trajectory $\alpha(t)$ is
 \[T(s,t) \propto \left(\frac{s}{s_0} \right)^{\alpha(t)} \]

- No prediction for t dependence

- Elastic cross section
 \[\frac{d\sigma_{el}}{dt} \approx \frac{1}{s^2} |T(s,t)|^2 \propto s^{2(\alpha(t)-1)} \]

- Total cross section considering the optical theorem
 \[\sigma_{tot} \approx \frac{1}{s} \text{Im} T(s,0) \propto s^{\alpha(0)-1} \]
Reggeons

\[\alpha_i(t) = \alpha_i(0) + \alpha_i' \cdot t, \quad i = f, \rho, \omega. \]

\[
\begin{align*}
\alpha_f(0) &= 0.703 \pm 0.023 & \alpha_f'(0) &= 0.797 \pm 0.014 \text{GeV}^{-2} \\
\alpha_\rho(0) &= 0.522 \pm 0.009 & \alpha_\rho'(0) &= 0.809 \pm 0.015 \text{GeV}^{-2} \\
\alpha_\omega(0) &= 0.435 \pm 0.033 & \alpha_\omega'(0) &= 0.923 \pm 0.054 \text{GeV}^{-2}
\end{align*}
\]

\[
\sigma_{tot} \propto \left(\frac{S}{S_0} \right)^{\alpha_i(0)-1} \quad \rightarrow \quad \sigma_{tot} \rightarrow 0 \quad \text{at} \quad s \rightarrow \infty
\]
Experiment: \(\sigma_{tot} \rightarrow 0 \) at \(s \rightarrow \infty \)

\[\sigma_{tot} \sim \left(\frac{s}{s_0} \right)^{\alpha_i(0)-1} \]

An object with \(\alpha(0) = 1 + \Delta > 1 \) is needed
Donnachie and Landshoff (1992)

\[\sigma_{\text{tot}} = A s^{0.0808} \]

grows as a power function of \(s \)

Unitarity requires that the total cross section at very high energies should not grow faster than \(\ln^2 s \) (Froissart bound).

For describing DIS data

\[F_2(x, Q^2) = f(Q^2) x^{\Delta(Q^2)} \]

(CKMT 1992)

\[F_2(x, Q^2) = f_1(Q^2) x^{-0.08} + f_2(Q^2) x^{-0.42} \]

(DL 1998)

soft Pomeron hard Pomeron
It is usually assumed that the Pomeron in QCD is related to gluonic exchanges in the t–channel.

Δ_{eff} determined from fits to data are in general different from Δ.

DIFFRACTION:
In HEP any process involving Pomeron exchange

See talks by
L. Jenkovszky
A. Martin
O. Nachtmann
W. Schäfer
A simple parameterization of Regge residues

\[g_{aa}(t) = g_{aa} \exp\left\{ R_{aa}^2 t \right\} \]

\[R_{aa} \text{ -- Regge radius of hadron } a \]

\[\alpha(t) = \alpha_0 + \alpha' t \]

\[\eta_\sigma(\alpha) = -\frac{\sigma + e^{-i\pi\alpha}}{\sin(\pi\alpha)} = e^{-i\pi\alpha/2} \]

\[\lambda \equiv R_{aa}^2 + R_{bb}^2 + \alpha' \left(\ln\left(\frac{s}{s_0}\right) - i\pi/2 \right) \]

Impact parameter representation

\[f_{ab}(s, b) \sim \int d^2 q_\perp \exp\left\{ -ibq_\perp \right\} T(s, q_\perp^2) \sim \frac{(s/s_0)^{\alpha_0 - 1}}{\lambda} \exp\left\{ -\frac{b^2}{4\lambda} \right\} \]

\[\frac{d\sigma}{dt} \sim \left(\frac{s}{s_0} \right)^{2\alpha - 2} \times \exp\left\{ -2 \left(R_{aa}^2 + R_{bb}^2 + \alpha' \ln\left(\frac{s}{s_0}\right) \right) |t| \right\} \]

\[\sqrt{b^2} = 2 |\lambda| \approx 2 \sqrt{R_{aa}^2 + R_{bb}^2 + \alpha' \ln\left(\frac{s}{s_0}\right)} \]

Radius of interaction increases with increasing \(s \)

Increases with increasing \(s \). Diffraction peak shrinkage.
Unitarity and two-body & three-body reactions

\[\sum_c T_{ac} T_{ac}^* = 2 \Im m T_{aa} \]

Analogous to the optical theorem, Muller’s theorem relates the inclusive cross-section for the reaction \(h_1 + h_2 \rightarrow c + X \) to the forward scattering amplitude of the three-body hadronic process \(h_1 + h_2 + \bar{c} \rightarrow h_1 + h_2 + \bar{c} \).

Double Regge limit

\[\Rightarrow 2 \Im m \]

Triple Regge limit

\[\Rightarrow 2 \Im m \]
$\frac{d\sigma_{SD}}{dM^2 dt} = \left(\frac{s_0}{s}\right)^2 \sum_{i,j,k} G_{ijk}(t) \left(\frac{s}{M^2}\right)^{\alpha_i(t)+\alpha_j(t)} \left(\frac{M^2}{s_0}\right)^{\alpha_k(0)}$

$G_{ijk}(t) = 4\pi g_{aa}^{\alpha_i}(t) g_{aa}^{\alpha_j}(t) g_{bb}^{\alpha_k}(0) r_{\alpha_i\alpha_j}(t) \eta(\alpha_i(t)) \eta^*(\alpha_j(t))$

See talks by
A. Martin
L. Jenkovszky

8/25/13 Martin Poghosyan
Double diffraction

Central production

Double gap topology
s-channel picture of Reggeons

Multiperipheral fluctuation development time:

\[\tau = \frac{p}{m^2} \]

Slow partons interact: \(p_n \approx m \)

\[n \sim \ln p \sim \ln s \]

Random walk in \(b \) space: \(\sqrt{b^2} \sim n \sim \sqrt{\ln s} \)

High-energy hadronic interactions are essentially non-local.
Summation of multiperipheral diagrams leads to regge behavior

Reggeon is a non-local object!

Ladder diagram
See A. Martin’s talk
Space-time picture of high-energy hh interactions

AFS (successive)

Mandelstam (simultaneous)

\[\tau \sim E\]

\[\sigma \to 0 \quad at \quad s \to \infty\]
Regge poles in QCD

$1/N$-expansion is a useful non-perturbative method to study soft interaction dynamics.

$N_c >> 1$ (t’Hooft)

$N_c \approx N_f >> 1$ (Veneziano)

All diagrams are classified according to their topology. Amplitudes are expanded in $1/N$ ($1/N^2$). The first term corresponds to planar diagrams.

Cutting of the planar diagram in the s-channel

Configuration of the final state particles.
Pomeron in QCD

Pomeron is usually related to gluonic exchange in the t-channel. From the point of view of $1/N$-expansion Pomeron corresponds to cylinder-type diagrams.

Cutting of the cylindrical diagram in the s-channel

Configuration of the final state particles.
\[a = \pi^+ \begin{cases} \frac{u}{d} \end{cases} \]

\[b = \pi^- \begin{cases} \frac{d}{u} \end{cases} \]

\[\sigma_{ab}^{an}(y_a - y_b) = w(y_{qa} - y_{\bar{q}a})w(y_{qb} - y_{\bar{q}b}) \cdot \sigma_{\bar{q}aqb} \cdot P_{qaqb \to X} \]

\[w(y_{qa} - y_{\bar{q}a})w(y_{qb} - y_{\bar{q}b}) = Aw(y_a - y_b) \]

\[w(y_{qi} - y_{\bar{q}j}) = A \exp\left\{-\beta(y_{qi} - y_{\bar{q}j})\right\} \]

\[\int d^2b_q w(y_a - y_{\bar{q}}, b_a - b_{\bar{q}})w(y_b - y_q, b_q - b_b) = Aw(y_a - y_b, b_a - b_b) \]

\[w(y_i - y_k, b_i - b_k) = \frac{A}{4\pi\gamma(y_i - y_k)} \exp\left\{-\beta(y_i - y_k) - \frac{(b_i - b_k)^2}{4\gamma(y_i - y_k)}\right\} \]

\[\beta = 1 - \alpha_R(0), \quad \gamma = \alpha'_R \]
At high energies (parton densities) the interaction between Pomerons starts to play an important role. The Regge theory becomes unsafe. Interaction vertices (multi-Pomeron and Pomeron-hadron) are not known theoretically.

models based on RFT:
Kaidalov-Ponomarev-Ter-Martirosyan, Khoze-Martin-Ryskin, Gotsman-Levin-Maor, Ostapchenko, L. Jenkovszky et al., Kaidalov-Poghosyan, ...

Main difference in implementing the GW mechanism, in used sets of diagrams, and in parameterizing interaction vertices (+AGK).
Gribov’s reggeon calculus

Regge-poles are not the only singularities of the amplitude. There are also branch points which correspond to the exchange of several Reggeons. A Regge pole can be interpreted as corresponding to a single scattering. Regge cuts – multiple scatterings of hardons’ constituents.

\[iM^{(n)}(s, t) = \frac{1}{n!} \int \prod_{i=1}^{n} \left[iM^{(1)}(s, q_{i\perp}^2) \frac{d^2q_{i\perp}}{\pi} \right] C^{(n)}(\{q_{i\perp}\}) \delta \left(q_{\perp} - \sum_{i=1}^{n} q_{i\perp} \right) \]

\[M^{(1)}(s, t) = \frac{T(s,t)}{8\pi s} = \gamma \eta(\alpha(0)) e^{\lambda t} \left(\frac{s}{s_0} \right)^\Delta \]

\[\Delta = \alpha_p - 1 \]
Multi-Pomeron exchange

\[M_P^{(n)}(s,t) = -i\lambda \left(\frac{\gamma}{\lambda} \right)^n \exp\left\{ -\frac{\lambda t}{n} \right\} \frac{n!}{n \cdot n!} \left(-\frac{s}{s_0} \right)^{n\Delta} \]

\[\Delta_{nP} = n\Delta_P \rightarrow \text{for } \Delta_P > 0 \text{ all } nP \text{ exchanges should be taken into account} \]

\[M(s,t) = \sum_{n=1}^{\infty} M_P^{(n)}(s,t) \]

\[\sigma_{\text{tot}} \sim \ln^2 s \]

Impact parameter representation

\[F(s,b) = 1 - \exp\left[\chi_P(s,b) \right] \]

\[\chi_P(s,b) = -\frac{\gamma}{\lambda} \exp\left\{ -\Delta \ln \left(\frac{s}{s_0} \right) - b^2/4\lambda \right\} \]

- eikonal

\[2\sqrt{\alpha_P/\Delta} \ln \left(\frac{s}{s_0} \right) \]

exponential (as for single \(P \) exchange)
How to calculate the cross-section of a given process?
Abramovsky-Gribov-Kancheli cutting rules

AGK cutting rules allow:
• to relate to each other the different s-channel discontinuities of a given graph
• to calculate the contribution of each graph in the total cross-section.

• If the Pomeron is not cut entirely, its contribution is suppressed exponentially.
• No particle production from interaction vertices
• All the vertices for various cuts are the same and real.

 o There is one cut-plane which separates the initial and final states

 o Each cut-pomeron obtains an extra factor of (-2) due to the discontinuity of the pomeron amplitude (for a cut Pomeron replace the factor $iM^{(1)}(s,t)$ by $2\text{Im}M^{(1)}(s,t)$)

 o Each un-cut pomeron obtains an extra factor of 2 since it can be placed on both sides of the cut-plane (the factors $iM^{(1)}(s,t)$ for the Pomerons to the right of the cut are placed by the complex-conjugate values)
AGK for PP exchange

\[
2\Delta M_0^{(2)} = 2 \left[\text{Re}M^{(1)}(s,t_1)\text{Re}M^{(1)}(s,t_2) + \text{Im}M^{(1)}(s,t_1)\text{Im}M^{(1)}(s,t_2) \right]
\]

Diffractive cutting (between Pomerons)

\[
2\Delta M_1^{(2)} = -8 \left[\text{Im}M^{(1)}(s,t_1)\text{Im}M^{(1)}(s,t_2) \right]
\]

Cutting through one of Pomerons

\[
2\Delta M_2^{(2)} = 4 \left[\text{Im}M^{(1)}(s,t_1)\text{Im}M^{(1)}(s,t_2) \right]
\]

Cutting both Pomerons

\[
2\Delta M_0^{(2)} + 2\Delta M_1^{(2)} + 2\Delta M_2^{(2)} = 2 \left[\text{Re}M^{(1)}(s,t_1)\text{Re}M^{(1)}(s,t_2) - \text{Im}M^{(1)}(s,t_1)\text{Im}M^{(1)}(s,t_2) \right] = 2\Delta M^{(2)}
\]

\[
\Delta M_1^{(2)} + 2 \cdot \Delta M_2^{(2)} = 0
\]
For any $n \geq k > 0$

$$2\Delta M_k^{(n)}(s, t) = (-1)^{n-k}2^n C_n^k \prod_{i=1}^n \text{Im}M^{(1)}(s, t_i)$$

$$2 \sum_{k=1}^n k\Delta M_k^{(n)}(s, t) = \left[(-2)^n \prod_{i=1}^n \text{Im}M^{(1)}(s, t_i) \right] \sum_{k=1}^n (-1)^k k C_n^k = 0 \quad n \geq 2$$
AGK and multiparticle production

\[N_{\text{part}}^*(-4) + 2N_{\text{part}}^*(+2) = 0 \]

(AGK cancellation)

\(\sigma_n^{(2)} \) is negative, it is a correction to the pole diagram. Reducing it opens a room for new production processes.
Inclusive cross-section

The central part of the inclusive spectrum is determined by Mueller-Kancheli diagram:

\[
\left(\frac{d\sigma}{dy} \right)_{y=0} \sim s^{(\alpha_{R_1} + \alpha_{R_2} - 2)/2}
\]

if \(R_1 = R_2 \equiv P \):

\[
\left(\frac{d\sigma}{dy} \right)_{y=0} \sim s^\Delta
\]

With account of enhanced diagrams only Mueller-Kancheli type diagrams survive

Schwimmer model:

\[
\left(\frac{d\sigma}{dy} \right)_{y=0} \propto \frac{s^\Delta}{1 + \frac{g_p r_{3P}}{\Delta} (s^\Delta - 1)}
\]
First estimate of the influence of enhanced graphs on physical observables

Dubovikov et al., Nucl. Phys. B123
Kopelovich and Lapidus, Sov. Phys. JETP 44
Dubovikov and Ter-Martirosyan, Nucl. Phys. B124
Kaidalov et al., Sov. J. N.P. 44

\[\Delta_{\text{eff}} = \Delta - 4\pi G_{\text{PPP}} \]

\[\Delta \approx 0.2 \quad \Delta_{\text{eff}} \approx 0.12 \]
First estimate of the influence of enhanced graphs on physical observables

$\Delta \approx 0.2 \quad \Delta_{\text{eff}} \approx 0.12$

Kaidalov et al., Sov. J. N.P. 44

Dubovikov et al., Nucl. Phys. B123

Kopelovich and Lapidus, Sov. Phys. JETP 44

Kaidalov et al., Sov. Phys. JETP 44

Inel

NSD
KNO-scaling violation was predicted

Number of chains increases with energy ➔ no KNO scaling at high energies

Kaidalov and Ter-Martirosyan 1982

\[\psi(z) = \langle N_{ch} \rangle \sigma_{N_{ch}}/\sigma_{\text{in}} \]

\[\sqrt{s} = 10^6 \text{ GeV} \]

\[\sqrt{s} = 540 \text{ GeV} \]
The role of multiple rescattering in hard processes

Survival probability (Bjorken 1992): no other interactions occur except the hard coll. of interest

$$S^2 = \frac{\int |M(s,b)|^2 P(s,b) d^2b}{\int |M(s,b)|^2 d^2b}$$

- $M(s,b)$ - amplitude (in b-space) of the particular process
- $P(s,b)$ - probability that no inelastic interaction occurs between scattered hadrons

Interplay of “soft” and “hard” dynamics in QCD.

Strong suppression of inelastic diffraction in the region of small b ($P \rightarrow 0$). Inelastic diff. occurs at the periphery of interaction region, where nonperturbative effects are essential.
At $E < E_c$ ($E_c \sim m_R$) an elastic hA -scattering amplitude can be considered as successive rescatterings of an initial hadron on nucleons of a nucleus. (Glauber)

At high energies hadronic (nuclear) fluctuations are “prepared” long before the interaction.

For $E > E_c$ there is a coherent interaction of constituents of a hadron with nucleons of a nucleus. hA elastic amplitude can be calculated as in the Glauber model, but with account of diffractive intermediate states. (Gribov)

The role of enhanced diagrams in AA

For collisions of identical nuclei (SS, PbPb) the $A^{4/3}$-dependence of particle densities of eq. (10) typical for the Glauber model changes to the behaviour A^δ. The value of delta is a weak function of energy and it is equal to $\delta \approx 1.1$ at LHC energies.

Heavy Ion Phys. 9 (1999, published before the RHIC era!)

For collisions of identical nuclei (SS, PbPb) the $A^{4/3}$-dependence of particle densities of eq. (10) typical for the Glauber model changes to the behaviour A^δ. The value of delta is a weak function of energy and it is equal to $\delta \approx 1.1$ at LHC energies.
$dN/d\eta$ depends on $A^{4/3}$ or $A^{1.1}$?

$A^{4/3}$ - Gribov-Glauber without enhanced diagrams

- 19.6 GeV: AuAu PHOBOS
- 22.4 GeV: CuCu PHOBOS
- 62.4 GeV: AuAu PHOBOS
- 130 GeV: AuAu PHENIX, AuAu PHOBOS

$A^{1.1}$ - Gribov-Glauber with enhanced diagrams

- 19.6 GeV: AuAu PHENIX, AuAu PHOBOS
- 22.4 GeV: CuCu PHOBOS
- 62.4 GeV: AuAu PHOBOS, AuAu PHENIX
- 200 GeV: AuAu BRAHMS
- 130 GeV: AuAu PHENIX, AuAu PHOBOS

$dN_{ch}/d\eta \propto A^{4/3} \cdot s^{0.15}$

$dN_{ch}/d\eta \propto A^{1.1} \cdot s^{0.15}$

Centrality (%)
Books and review papers
